

遙控模型 無人機 STEAM 創客

> 營隊宗旨

"倍思科學"教育系統,是由國內長期推動科學教育的專家學者、和優秀的中小學教師共同規劃,以最具啟發性和娛樂性的方式,來激發孩子學習科學的潛能。這套科學系統,除了完全符合十二年國教「自然與科技領域」的基本精神,同時也適合激發兒童的科學潛能,符合兒童與家長對科學教育的期待。

> 營隊模式

參加對象:一至六年級學生

班級人數:以8人為開班標準, 20人一班為限。

上課日期:2026 寒假

上課時間:5全天。

>課程特色

● 同步國際台灣唯一

採用全球唯一夾子無人機套件,外銷日本、韓國、美國等教育先進國家,目前台灣地區由倍思科學獨家進口,2017 年獲中國駕駛員協會、青少年無人機活動基地採用。

● 樂高積木無限擴充

夾子套件創意無限,零件與樂高積木通用,孩子可以與家裡 的樂高積木結合,創造更多驚奇。

● 科技操控一鍵起飛

一般無人機操作有一定難度,夾子無人機搭載陀螺儀晶片、氣壓定高模組、一鍵起飛降落、緊急斷電按鈕...讓每個孩子經過練習都能輕鬆操作。

● 創客精神 Maker 教學

操控自己製作的遙控模型進行比賽,為取得勝利學會觀察結果並修正模型,自主解決遇到的問題,同時學會細心操作。

● STEAM 教育

無人機救災模擬競賽,讓孩子的思考不在侷限在課堂,嘗試 解決現今社會遇到的問題,提高思考高度。

● 跨領域學習

跨學科的學習應用也是現今社會的主流,單一的學習終將被 現今社會淘汰,唯有跨界的合作整合才能生存、進步,透過 這次營隊孩子將深刻體驗並學習整合所學到的知識。

Bush 信息科學實驗室

> 營隊規劃

	第一天	第二天	第三天	第四天	第五天
上	衝上雲霄	動力與飛行	浮沉的 阿基米德	無人機 駕訓班	無人機 救援隊
午	遙控模型 與動力	螺旋槳 動力飛機	破浪 遙控船	拆裝小能手	小機師 大顯神威
下	轉動吧! 馬達	極速 遙控車	遙控船競賽	無人機 飛行原理	未來 飛行奇想
午	遙控系統& 能量系統	F16 大賽	神奇的 反力矩	無人機 魁地奇	航空起落降

衝上雲霄	從最新前端的科技領域著手,再經由分組分隊取相關隊名與製作隊旗,成 為無人機先驅,從中獲取豐富的知識與經驗。
遙控模型 與動力	遙控模型指的是使用無線遙控技術控制,可以移動或是執行任務的模型機器,隨著科技日新月異,今天每個人幾乎都能玩得起遙控模型,遙控模型 在生活中有什麼功用?模型又是如何運作呢?讓我們一起知曉吧!
轉動吧! 馬達	咦?什麼動力讓遙控模型可以自由移動的?扇葉、馬達的原理將一一交給 孩子。老師將帶領孩子們自製簡易馬達,透過親手操作培養出解決困難的 能力,以及發會創意修改自己的專屬簡易馬達吧!
遙控系統& 能量系統	遙控模型顧名思義是用遠距離遙控的方式來控制,眾多遙控方式各有什麼 優缺點?透過體驗讓孩子認識各種遙控方式。要能執行任務能源必不可 少,是什麼樣的能源讓遙控模型自由移動?
動力與飛行	說明推進力如何幫助機翼產生上升的力量,針對一些有趣或常見的動力, 例如:氣球引擎、螺旋槳動力、噴射引擎、蒸汽引擎、化學引擎等動力飛 行方式,以實驗作印證說明。
螺旋槳 動力飛機	透過製作螺旋槳動力飛機強化學生的操作能力、以及講解螺旋機正確的飛行操作方式,將從實驗中了解機翼的造型對於飛機升空具有關鍵性影響, 進而以康達效應和牛頓第三運動定律驗證飛行的原理。
極速遙控車	20 世紀亨利·福特成功的將汽車量產普及化,並且優化了當時的工業技術, 讓降低了汽車的故障率以及售價真正的讓汽車進入了人民的生活中,遙控 汽車也是最入門的遙控模型,由自製遙控汽車開啟孩子的創客之路。
F16 大賽	拆解無人機的動力作為我們遙控車的引擎,裝備在自製的汽車上,與同學 們展開一場極限狂飆的競速大賽!

浮沉的	由人類最早的交通工具,和船發展的歷史談起。並藉由實驗來說明阿基米
阿基米德	德的新發現,浮力與密度的原理。船在人類的文明中佔有極重要的角色,
一———	在飛機還沒發明以前,各大洲之間的往來交流全靠船舶的運輸。
	船可以浮在水面上是因為靈活應用了阿基米德浮力原理,為了要成功製作
破浪遙控船	出好玩的遙控船,小朋友將會自主並努力的學習浮力原理,透過實驗競賽
	讓孩子靈活應用排水量與浮力之間的關西,最後製作出自己的遙控船。
远 泊 古 千	小朋友將會自主並努力學習,透過實驗競賽讓孩子靈活應用排水量與浮力
破浪高手	之間的關係,最後製作出自己的遙控船。
	遙控船搶旗大賽要獲得勝利需要兩個關鍵,首先船又細又薄才能跑得更
神奇的	快,其次船又寬又厚才能更穩定,但這兩個關鍵本身衝突矛盾,要如何取
反力矩	得之間平衡取得勝利,考驗孩子嘗試且修正設計,讓孩子不知不覺中自主
	學會解決問題。
ATT 1 1444	無人機是現今最夯的遙控模型,不只可以遙控遊戲還能進行空拍等空中任
無人機	務,軍方也在積極開發並執行軍事任務,因此我們要先學會如何操作無人
駕訓班	機,以及無人機的基本知識與安全須知。
	這堂課我們將組裝自己的無人機並嘗試飛行,操控無人機並不容易,我們
拆裝小能手	使用的無人機搭載智能模組讓孩子能更簡單的操控,學習操控的同時培養
	孩子細心的態度。
Arr 1 144	無人機飛行原理相較其他遙控模型複雜許多,四個螺旋槳的相互配合、反
無人機	力矩的靈活應用都充滿了設計者的巧思,孩子透過操作無人機直觀的了解
飛行原理	無人機飛行原理,觀察課本上的知識如何相互結合並應用在現實生活中。
	知悉無人機各項功能以及練習過操控飛行後,讓我們來進行一場魁地奇大
魁地奇競賽	賽吧!看誰改裝的無人機可以最快速的通關,又或者可以進行最炫的花式
	飛行呢?比賽的鐘聲敲響了,同學們準備一同來起飛吧!
ATT 1 1499	台灣地震、山難頻繁,模擬災難環境,進行醫療物資投遞模擬競賽,吊掛、
無人機	傾倒、聯合懸掛等等方式讓孩子自己思考設計,看什麼方法最有效率,每
救援隊	組小朋友要分別設計不同的無人機,適應部環境與發送物資。
.l. 144 5±	經由學生集體討論無人機如何適應各種環境,發送不同的物資,也才能和
小機師	伙伴們一起得高分,科學教育將不再只是紙上談兵,孩子嘗試解決生活中
大顯神威	實際遇到的問題,也許我們較能找出下一個艾薩克·牛頓。
+ +	學生將從實驗中理解亂流對飛行的影響,進一步了解風洞試驗的意義。為
未來	了激發孩子對生活科學的興趣,將會製作一個不落地的飛行器,同時透過
飛行奇想	討論英國鳥人大賽以及未來飛行的奇思妙想,啟發孩子的創意思考。
	課程統整用引導的方法複習這學習所有的科學課程,讓孩子們增加思考與
航空起降落	記憶的能力,而營隊的最後,和一起奮鬥的夥伴成為最佳無人機操控員!
	·

帶領孩子一一體驗製作,為了成功製作出自己的遙控模型,孩子會自主認真地學會相關的物理原理,形成良好的學習習慣,動力學、物理學、化學、電磁學等等相關學科的必須聯合應用,跨學科的學習應用也是現今社會的主流,單一的學習終將被現今社會淘汰,唯有跨界的合作整合才能生存、進步,透過這次營隊孩子將深刻體驗並學習整合所學到的知識。

STEAM 課程是現今教育的趨勢, STEAM 指的是 S 科學 (Science)、T 技術 (Technology)、E 工程 (Engineering)、A 藝術 (Art)、M 數學 (Mathematics), STEAM 教育就是集科學、技術、工程、藝術、數學多學科融合的綜合教育,STEAM 是一種教育理念,有別於傳統的單學科、重書本知識的教育方式。STEAM 是一種重實踐的超學科教育概念。任何事情的成功都不僅僅依靠某一種能力的實現,而是需要借於多種能力之間,比如高科技電子產品的建造過程中,不但需要科學技術,運用高科技手段創新產品功能,還需要好看的外觀,也就是藝術等方面的綜合才能,所以單一技能的運用已經無法支撐未來人才的發展,未來,我們需要的是多方面的綜合型人才,營隊中孩子將初次學習跨領域的結合應用,成就未來人才。